Search results
Results from the WOW.Com Content Network
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
Proton exchange membrane Proton exchange membrane (PEM) is a semipermeable membrane generally made from ionomers and designed to conduct protons while being impermeable to gases such as oxygen or hydrogen. Proton exchange membrane fuel cell Proton exchange membrane fuel cell (PEMFC) a type of fuel cell based on a polymer electrolyte membrane.
As a proton conductor, BCZYZn05 can be used throughout the cell without inducing parasitic electronic leakage while providing a supportive backbone throughout the cell. Using nano-indentation , the use of BCZYZn05 was found to increase the hardness of the fuel cell components while necessary electrochemical reactivity and conductivity.
An example of a proton pump that is not electrogenic, is the proton/potassium pump of the gastric mucosa which catalyzes a balanced exchange of protons and potassium ions. [citation needed] The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient.
CLC proteins can either be ion channels or anion-proton exchangers, so CLC-1 and CLC-2 are membrane chloride channels, while CLC-3 through CLC-7 are chloride-hydrogen exchangers. [ 48 ] CLC-4 is a member of the CLC family that is prominent in the brain, but is also located in the liver, kidneys, heart, skeletal muscle, and intestine.