enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HATU - Wikipedia

    en.wikipedia.org/wiki/HATU

    HATU is commonly encountered in amine acylation reactions (i.e., amide formation). Such reactions are typically performed in two distinct reaction steps: (1) reaction of a carboxylic acid with HATU to form the OAt-active ester; then (2) addition of the nucleophile (amine) to the active ester solution to afford the acylated product.

  3. HBTU - Wikipedia

    en.wikipedia.org/wiki/HBTU

    The activated intermediate species attacked by the amine during aminolysis is the HOBt ester. To create the HOBt ester, the carboxyl group of the acid attacks the imide carbonyl carbon of HBTU. Subsequently, the displaced anionic benzotriazole N-oxide attacks of the acid carbonyl, giving the tetramethyl urea byproduct and the activated ester.

  4. 1-Ethyl-3- (3-dimethylaminopropyl)carbodiimide - Wikipedia

    en.wikipedia.org/wiki/1-Ethyl-3-(3-dimethylamino...

    The scheme above shows the general mechanistic steps for EDC-mediated coupling of carboxylic acids and amines under acidic conditions. The tetrahedral intermediate and the aminolysis steps are not shown explicitly. EDC couples primary amines, and other nucleophiles, [5] to carboxylic acids by creating an activated ester leaving group. First ...

  5. TCFH - Wikipedia

    en.wikipedia.org/wiki/TCFH

    TCFH itself is a common reagent used in the preparation of uronium and guanidinium salts used for amide bond formation and peptide synthesis, such as HATU. [3] [4] [5]Amide bond formation with TCFH can be performed in a wide range of organic solvents, most commonly acetonitrile, but also water [6] and in the solid state. [7]

  6. Peptide synthesis - Wikipedia

    en.wikipedia.org/wiki/Peptide_synthesis

    Coupling of two amino acids in solution. The unprotected amine of one reacts with the unprotected carboxylic acid group of the other to form a peptide bond.In this example, the second reactive group (amine/acid) in each of the starting materials bears a protecting group.

  7. Amide - Wikipedia

    en.wikipedia.org/wiki/Amide

    While the conjugate acid of an amine has a pK a of about 9.5, the conjugate acid of an amide has a pK a around −0.5. Therefore, compared to amines, amides do not have acid–base properties that are as noticeable in water. This relative lack of basicity is explained by the withdrawing of electrons from the amine by the carbonyl.

  8. Lactam - Wikipedia

    en.wikipedia.org/wiki/Lactam

    For example, Fmoc-Dab(Mtt)-OH, although its side-chain amine is sterically protected by extremely bulky 4-Methyltrityl (Mtt) group, the amine can still intramolecularly couple with the carboxylic acid to form a γ-lactam. This reaction almost finished within 5 minutes with many coupling reagents (e.g. HATU and PyAOP). [1]

  9. N,N-Diisopropylethylamine - Wikipedia

    en.wikipedia.org/wiki/N,N-Diisopropylethylamine

    It is commonly used as the hindered base in amide coupling reactions between a carboxylic acid (typically activated, for example, as an acid chloride, as illustrated below) and a nucleophilic amine. [5] As DIPEA is hindered and poorly nucleophilic, it does not compete with the nucleophilic amine in the coupling reaction.