Search results
Results from the WOW.Com Content Network
In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, and ultimately the folds meet and coalesce in the middle line and convert the groove into the closed ...
After formation of the tube, the brain forms into three sections; the hindbrain, the midbrain, and the forebrain. The types of neuroectoderm include: Neural crest. pigment cells in the skin; ganglia of the autonomic nervous system; dorsal root ganglia. facial cartilage; aorticopulmonary septum of the developing heart and lungs; ciliary body of ...
Gyrification in the human brain. Gyrification is the process of forming the characteristic folds of the cerebral cortex. [1] The peak of such a fold is called a gyrus (pl. gyri), and its trough is called a sulcus (pl. sulci).
The neural plate folds in upon itself to form the neural tube, which will later differentiate into the spinal cord and the brain, eventually forming the central nervous system. [2] Computer simulations found that cell wedging and differential proliferation are sufficient for mammalian neurulation.
The development of the nervous system in humans, or neural development, or neurodevelopment involves the studies of embryology, developmental biology, and neuroscience.These describe the cellular and molecular mechanisms by which the complex nervous system forms in humans, develops during prenatal development, and continues to develop postnatally.
While the cells that remain as the neural tube form the brain and spinal cord, the other cells that were part of the neural plate migrate away from the tube as neural crest cells. After an epithelial–mesenchymal transition, these cells form the autonomic nervous system and certain cells of the peripheral nervous system. [7]
The human brain undergoes gyrification during fetal and neonatal development. In embryonic development, all mammalian brains begin as smooth structures derived from the neural tube . A cerebral cortex without surface convolutions is lissencephalic , meaning 'smooth-brained'. [ 4 ]
The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. [1] [2] This structure is associated with primary neurulation, meaning that it forms by the coming together of tissue layers, rather than a clustering, and subsequent hollowing out, of individual cells (known as secondary neurulation).