enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations.. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time

  6. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Modelling Sudoku as an exact cover problem and using an algorithm such as Knuth's Algorithm X and his Dancing Links technique "is the method of choice for rapid finding [measured in microseconds] of all possible solutions to Sudoku puzzles." [18] An alternative approach is the use of Gauss elimination in combination with column and row striking.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    An alternative way to eliminate taking square roots in the decomposition is to compute the LDL decomposition =, then solving = for y, and finally solving =. For linear systems that can be put into symmetric form, the Cholesky decomposition (or its LDL variant) is the method of choice, for superior efficiency and numerical stability.

  8. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution.

  9. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.