enow.com Web Search

  1. Ads

    related to: solving using elimination and substitution problems

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]

  4. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    This system has the exact solution of x 1 = 10.00 and x 2 = 1.000, but when the elimination algorithm and backwards substitution are performed using four-digit arithmetic, the small value of a 11 causes small round-off errors to be propagated.

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Second, we solve the equation = for x. In both cases we are dealing with triangular matrices (L and U), which can be solved directly by forward and backward substitution without using the Gaussian elimination process (however we do need this process or equivalent to compute the LU decomposition itself).

  6. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Solving gives =, and substituting this back into the equation for yields =. This method generalizes to systems with additional variables (see "elimination of variables" below, or the article on elementary algebra.)

  7. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.

  1. Ads

    related to: solving using elimination and substitution problems