Search results
Results from the WOW.Com Content Network
Interneurons can be further broken down into two groups: local interneurons and relay interneurons. [4] Local interneurons have short axons and form circuits with nearby neurons to analyze small pieces of information. [5] Relay interneurons have long axons and connect circuits of neurons in one region of the brain with those in other regions. [5]
The trisynaptic circuit or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The trisynaptic circuit is a neural circuit in the hippocampus, which is made up of three major cell groups: granule cells in the dentate gyrus, pyramidal neurons in CA3, and pyramidal neurons in CA1. The hippocampal relay involves 3 main regions ...
As a result of this reflex, activation of the Ib afferent causes the alpha motor neuron to become inhibited. Thus, the contraction of the muscle stops. [14] This is an example of a disynaptic reflex, in which the circuitry contains a spinal interneuron between the sensory afferent and the motor neuron. [13] [14]
A neuron, neurone, [1] or nerve cell is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the brain and spinal cord and help to receive and conduct impulses.
The neurotransmitter binds to chemical receptor molecules located in the membrane of another neuron, the postsynaptic neuron, on the opposite side of the synaptic cleft. Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands.
Diagram of a chemical synaptic connection. In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending on the mechanism of signal transmission between neurons.
A diagram of the proteins found in the active zone. The active zone is present in all chemical synapses examined so far and is present in all animal species. The active zones examined so far have at least two features in common, they all have protein dense material that project from the membrane and tethers synaptic vesicles close to the membrane and they have long filamentous projections ...
The axon of the second order neuron, if it is a projection neuron and not an interneuron, then goes to the third order neuron in the thalamus. The thalamus is known as the "gateway to the cortex". The third order neuron then goes to the cerebral cortex. The afferent neurons are either A fibers or C fibers.