Search results
Results from the WOW.Com Content Network
Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299 792 458 m/s [2]). Known as electromagnetic radiation , these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays .
The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws. [3] Maxwell's derivation of the electromagnetic wave equation has been replaced in modern physics education by a much less ...
This may be the most remarkable contribution of Maxwell's work, enabling him to derive the electromagnetic wave equation in his 1865 paper A Dynamical Theory of the Electromagnetic Field, showing that light is an electromagnetic wave. This lent the equations their full significance with respect to understanding the nature of the phenomena he ...
The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws. Maxwell's derivation of the electromagnetic wave equation has been replaced in modern physics by a much less cumbersome method ...
Curvature of spacetime affects electrodynamics. An electromagnetic field having energy and momentum also generates curvature in spacetime. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. (Whether this is the appropriate generalization requires ...
When Maxwell's equations are treated in a background-independent manner, that is, when the spacetime metric is taken to be a dynamical variable dependent on the electromagnetic field, then the electromagnetic wave equation and Maxwell's equations are nonlinear.
Working on the problem further, Maxwell showed that the equations predict the existence of waves of oscillating electric and magnetic fields that travel through empty space at a speed that could be predicted from simple electrical experiments; using the data available at the time, Maxwell obtained a velocity of 310,740,000 metres per second (1. ...
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...