Search results
Results from the WOW.Com Content Network
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
Square root of 3, Theodorus' constant [6] 1.73205 08075 68877 29352 ... All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used ...
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
Divide each side by a, the coefficient of the squared term. Subtract the constant term c/a from both sides. Add the square of one-half of b/a, the coefficient of x, to both sides. This "completes the square", converting the left side into a perfect square. Write the left side as a square and simplify the right side if necessary.
As conventionally taught, completing the square consists of adding the third term, v 2 to + to get a square. There are also cases in which one can add the middle term, either 2 uv or −2 uv , to u 2 + v 2 {\displaystyle u^{2}+v^{2}} to get a square.
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...