enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    For this class of problems, the instance data P would be the integers m and n, and the predicate F. In a typical backtracking solution to this problem, one could define a partial candidate as a list of integers c = (c[1], c[2], …, c[k]), for any k between 0 and n, that are to be assigned to the first k variables x[1], x[2], …, x[k]. The ...

  3. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1] Algorithm X is a recursive , nondeterministic , depth-first , backtracking algorithm that finds all solutions to the exact cover problem.

  4. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    Redwood City, California: Benjamin/Cummings Publishing Company, Inc. Appendix C includes impossibility of algorithms deciding if a grammar contains ambiguities, and impossibility of verifying program correctness by an algorithm as example of Halting Problem. Halava, Vesa (1997).

  5. Backjumping - Wikipedia

    en.wikipedia.org/wiki/Backjumping

    When further backtracking or backjumping from the node, the variable of the node is removed from this set, and the set is sent to the node that is the destination of backtracking or backjumping. This algorithm works because the set maintained in a node collects all variables that are relevant to prove unsatisfiability in the leaves that are ...

  6. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Algorithm X is an algorithm for solving the exact cover problem. It is a straightforward recursive , nondeterministic , depth-first , backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique.

  7. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.

  8. Look-ahead (backtracking) - Wikipedia

    en.wikipedia.org/wiki/Look-ahead_(backtracking)

    In a general constraint satisfaction problem, every variable can take a value in a domain. A backtracking algorithm therefore iteratively chooses a variable and tests each of its possible values; for each value the algorithm is recursively run. Look ahead is used to check the effects of choosing a given variable to evaluate or to decide the ...

  9. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Such problems are usually solved via search, in particular a form of backtracking or local search. Constraint propagation is another family of methods used on such problems; most of them are incomplete in general, that is, they may solve the problem or prove it unsatisfiable, but not always. Constraint propagation methods are also used in ...