Search results
Results from the WOW.Com Content Network
Nucleotides are heterocyclic compounds, that is, they contain at least two different chemical elements as members of its rings. [citation needed] Both RNA and DNA contain two major purine bases, adenine (A) and guanine (G), and two major pyrimidines. In both DNA and RNA, one of the pyrimidines is cytosine (C).
Pyrimidine (C 4 H 4 N 2; / p ɪ ˈ r ɪ. m ɪ ˌ d iː n, p aɪ ˈ r ɪ. m ɪ ˌ d iː n /) is an aromatic, heterocyclic, organic compound similar to pyridine (C 5 H 5 N). [3] One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring.
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine ...
The nitrogenous bases are either purines or pyrimidines, heterocycles whose structures support the specific base-pairing interactions that allow nucleic acids to carry information. The base is always bonded to the 1'-carbon of the deoxyribose, an analog of ribose in which the hydroxyl group of the 2'-carbon is replaced with a hydrogen atom.
These purine-pyrimidine pairs, which are called base complements, connect the two strands of the helix and are often compared to the rungs of a ladder. Only pairing purine with pyrimidine ensures a constant width for the DNA. The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based
C 4 H 4 N 2 O 2 → H 3 NCH 2 CH 2 COO − + NH + 4 + CO 2. Oxidative degradation of uracil produces urea and maleic acid in the presence of H 2 O 2 and Fe 2+ or in the presence of diatomic oxygen and Fe 2+. Uracil is a weak acid. The first site of ionization of uracil is not known. [12]
[2] The larger nucleobases, adenine and guanine, are members of a class of doubly ringed chemical structures called purines; the smaller nucleobases, cytosine and thymine (and uracil), are members of a class of singly ringed chemical structures called pyrimidines. Purines are only complementary with pyrimidines: pyrimidine-pyrimidine pairings ...