Search results
Results from the WOW.Com Content Network
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
For example, the penalty for a gap of length 2 is +. An arbitrary gap penalty was used in the original Smith–Waterman algorithm paper. It uses O ( m 2 n ) {\displaystyle O(m^{2}n)} steps, therefore is quite demanding of time.
Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0? Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time?
In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2 2 p(n)) time, where p(n) is a polynomial function of n.
Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,
EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds.
N-dimensional Quickhull was invented in 1996 by C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. [1] It was an extension of Jonathan Scott Greenfield's 1990 planar Quickhull algorithm, although the 1996 authors did not know of his methods. [2] Instead, Barber et al. describe it as a deterministic variant of Clarkson and Shor's 1989 ...
The worst-case complexity is the maximum of the complexity over all inputs of size n, and the average-case complexity is the average of the complexity over all inputs of size n (this makes sense, as the number of possible inputs of a given size is finite). Generally, when "complexity" is used without being further specified, this is the worst ...