Search results
Results from the WOW.Com Content Network
The observed velocities predicted by the Michaelis–Menten equation can be used to directly model the time course disappearance of substrate and the production of product through incorporation of the Michaelis–Menten equation into the equation for first order chemical kinetics.
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
Michaelis–Menten kinetics for enzyme-catalysis: first-order in substrate (second-order overall) at low substrate concentrations, zero order in substrate (first-order overall) at higher substrate concentrations; and; the Lindemann mechanism for unimolecular reactions: second-order at low pressures, first-order at high pressures.
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
Reversible Michaelis–Menten kinetics, using the reversible form of the Michaelis–Menten equation, is therefore important when developing computer models of cellular processes involving enzymes. In enzyme kinetics, the Michaelis–Menten kinetics kinetic rate law that describes the conversion of one substrate to one product, is often ...
While e may be any value (positive, negative, or zero) generally positive or negative values smaller in magnitude than one equivalent of substrate are used in reaction progress kinetic analysis. (One might note that pseudo-zero-order kinetics uses excess values much much greater in magnitude than the one equivalent of substrate).
[1] [2] Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds for situations where the amount of nucleophile is much greater than that of the intermediate. Instead, the rate equation may be more accurately described using steady-state kinetics.
In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...