Search results
Results from the WOW.Com Content Network
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.
In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom, resulting in a free proton and a free electron. Above this energy (below this wavelength), all wavelengths of light may be absorbed. This forms a continuum in the energy spectrum ...
The equivalent width of a spectral line is a measure of the area of the line on a plot of intensity versus wavelength in relation to underlying continuum level. It is found by forming a rectangle with a height equal to that of continuum emission, and finding the width such that the area of the rectangle is equal to the area in the spectral line.
The Lyman limit is the short-wavelength end of the hydrogen Lyman series, at 91.13 nm (911.3 Å)(13.6 eV). It corresponds to the energy required for an electron in the hydrogen ground state to escape from the electric potential barrier that originally confined it, thus creating a hydrogen ion. [1] This energy is equivalent to the Rydberg constant.
Its frequency is thus the Lyman-alpha hydrogen frequency, increased by a factor of (Z − 1) 2. This formula of f = c / λ = (Lyman-alpha frequency) ⋅ ( Z − 1) 2 is historically known as Moseley's law (having added a factor c to convert wavelength to frequency), and can be used to predict wavelengths of the K α (K-alpha) X-ray spectral ...
Messing up pronunciations can be a source of both annoyance and amusement, but language learning platform Babbel has put together a handy guide to stop you putting your foot in it.
In reference to the figure shown, Lyman-Werner photons are emitted as described below: A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly.