Search results
Results from the WOW.Com Content Network
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 26 January 2025. British X-ray crystallographer (1920–1958) This article is about the chemist. For the Mars rover named after her, see Rosalind Franklin (rover). Rosalind Franklin Franklin with a microscope in 1955 Born Rosalind Elsie Franklin (1920-07-25) 25 July 1920 Notting Hill, London, England ...
Dubbed S, B, P, and Z, these artificial bases are capable of bonding with each other in a predictable way (S–B and P–Z), maintain the double helix structure of DNA, and be transcribed to RNA. Their existence could be seen as an indication that there is nothing special about the four natural nucleobases that evolved on Earth.
The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Atheneum. ISBN 978-0-689-70602-8. (first published in 1968) Wilkins, Maurice (2003). The Third Man of the Double Helix: The Autobiography of Maurice Wilkins. Oxford University Press. ISBN 978-0-198-60665-9.
Photo 51 became a crucial data source [17] that led to the development of the DNA model and confirmed the prior postulated double helical structure of DNA, which were presented in the series of three articles in the journal Nature in 1953. Cartoon explanation of how Photo 51 captured the double helix structure of DNA.
After the discovery of the double helix model of DNA, Crick's interests quickly turned to the biological implications of the structure. In 1953, Watson and Crick published another article in Nature which stated: "it therefore seems likely that the precise sequence of the bases is the code that carries the genetical information".
In 1953, James Watson and Francis Crick discovered the double helical structure of the DNA molecule based on the discoveries made by Rosalind Franklin. [5] In 1961, François Jacob and Jacques Monod demonstrated that the products of certain genes regulated the expression of other genes by acting upon specific sites at the edge of those genes.
The initial double helix model discovered, now termed B-form DNA is by far the most common conformation in cells. [12] Two additional rarer helical conformations that also naturally occur were identified in the 1970s: A-form DNA, and Z-form DNA. [13]