enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural ...

  5. On shell and off shell - Wikipedia

    en.wikipedia.org/wiki/On_shell_and_off_shell

    This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:

  6. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    A space rendezvous is a sequence of orbital maneuvers during which two spacecraft, one of which is often a space station, arrive at the same orbit and approach to a very close distance (e.g. within visual contact).

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

  9. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    It can be confusing to try to apply Newton's second law of motion directly to such a system. [1] [2] Instead, the time dependence of the mass m can be calculated by rearranging Newton's second law and adding a term to account for the momentum carried by mass entering or leaving the system. The general equation of variable-mass motion is written as

  1. Related searches how does a shell work in space force definition of motion calculator equation

    orbital mechanics formulaspacecraft velocity and position
    aerodynamic forces of spaceorbital mechanics of satellites