Search results
Results from the WOW.Com Content Network
If the body is a spherically symmetric shell (i.e., a hollow ball), no net gravitational force is exerted by the shell on any object inside, regardless of the object's location within the shell. A corollary is that inside a solid sphere of constant density, the gravitational force within the object varies linearly with distance from the center ...
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural ...
A ballistic trajectory is a parabola with homogeneous acceleration, such as in a space ship with constant acceleration in absence of other forces. On Earth the acceleration changes magnitude with altitude as g ( y ) = g 0 / ( 1 + y / R ) 2 {\textstyle g(y)=g_{0}/(1+y/R)^{2}} and direction (faraway targets) with latitude/longitude along the ...
Celestial motion, without additional forces such as drag forces or the thrust of a rocket, is governed by the reciprocal gravitational acceleration between masses. A generalization is the n -body problem , [ 3 ] where a number n of masses are mutually interacting via the gravitational force.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:
Precise trajectory calculations require taking into account small forces like atmospheric drag, radiation pressure, and solar wind. A rocket under continuous or intermittent thrust (or an object climbing a space elevator) can attain escape at any non-zero speed, but the minimum amount of energy required to do so is always the same.