Search results
Results from the WOW.Com Content Network
Coma of a single lens. Each cone of light focuses on different planes along the optical axis. In optics (especially telescopes), the coma (/ ˈ k oʊ m ə /), or comatic aberration, in an optical system refers to aberration inherent to certain optical designs or due to imperfection in the lens or other components that results in off-axis point sources such as stars appearing distorted ...
A Winston cone is a non-imaging light collector in the shape of an off-axis parabola of revolution [1] [2] with a reflective inner surface. It concentrates the light passing through a relatively large entrance aperture through a smaller exit aperture. [3]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Off-axis feed or offset-feed The primary reflector is asymmetric, with the focus, and the feed, located to one side, outside the beam area. This avoids the problem of the feed obstructing the beam. This avoids the problem of the feed obstructing the beam.
Parallel rays coming into a parabolic mirror are focused at a point F. The vertex is V, and the axis of symmetry passes through V and F. For off-axis reflectors (with just the part of the paraboloid between the points P 1 and P 3), the receiver is still placed at the focus of the paraboloid, but it does not cast a shadow onto the reflector.
Example of a particle collimator. A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make collimated light or parallel rays), or to cause the spatial cross section of the beam to become smaller (beam limiting device).
2. Open the email. 3. Click Download AOL Desktop Gold or Update Now. 4. Navigate to your Downloads folder and click Save. 5. Follow the installation steps listed below.
An off-axis optical system is an optical system in which the optical axis of the aperture is not coincident with the mechanical center of the aperture. The principal applications of off-axis optical systems are to avoid obstruction of the primary aperture by secondary optical elements, instrument packages, or sensors, and to provide ready access to instrument packages or sensors at the focus.