Search results
Results from the WOW.Com Content Network
2-Methoxy-1,3-butadiene and ethyl-2-butynoate undergo a Diels-Alder reaction to generate a precursor which is hydrolyzed to obtain Hagemann's ester. By varying the substituents on the butynoate starting material, this approach allows for different C2 alkylated Hagemann's ester derivatives to be synthesized.
The Reformatsky reaction (sometimes transliterated as Reformatskii reaction) is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters: [1] [2] The Reformatsky reaction. The organozinc reagent, also called a 'Reformatsky enolate', is prepared by treating an alpha-halo ester ...
Esters of propanoic acid are produced commercially by this method: H 2 C=CH 2 + ROH + CO → CH 3 CH 2 CO 2 R. A preparation of methyl propionate is one illustrative example. H 2 C=CH 2 + CO + CH 3 OH → CH 3 CH 2 CO 2 CH 3. The carbonylation of methanol yields methyl formate, which is the main commercial source of formic acid. The reaction is ...
The Kowalski ester homologation is a chemical reaction for the homologation of esters. [1] [2] The Kowalski ester homologation. This reaction was designed as a safer alternative to the Arndt–Eistert synthesis, avoiding the need for diazomethane. The Kowalski reaction is named after its inventor, Conrad J. Kowalski.
Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well (i.e. esters of acidic −SH, −SeH, −TeH, −PoH and −LvH groups). According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well (e.g. amides), but not according to the IUPAC. [1]
Ortho esters are readily hydrolyzed in mild aqueous acid to form esters: . RC(OR ′) 3 + H 2 O → RCO 2 R ′ + 2 R ′ OH. For example, trimethyl orthoformate CH(OCH 3) 3 may be hydrolyzed (under acidic conditions) to methyl formate and methanol; [5] and may be further hydrolyzed (under alkaline conditions) to salts of formic acid and methanol.
In organic chemistry and biochemistry esters are the functional group (R'-COOR") consisting of an organic radical united with the residue of any oxygen acid, either organic or inorganic. An ester is a product of the reaction of an acid (usually organic) and an alcohol (the hydrogen of the acid R-COOH is replaced by an alkyl group R").
The mechanism of acid-catalyzed hydrolysis of esters is the reverse of Fischer esterification. Acid is only required in catalytic amounts, as in Fischer esterification, and an excess of water drives the equilibrium towards carboxylic acid and alcohol. [1]