Search results
Results from the WOW.Com Content Network
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
Esters of propanoic acid are produced commercially by this method: H 2 C=CH 2 + ROH + CO → CH 3 CH 2 CO 2 R. A preparation of methyl propionate is one illustrative example. H 2 C=CH 2 + CO + CH 3 OH → CH 3 CH 2 CO 2 CH 3. The carbonylation of methanol yields methyl formate, which is the main commercial source of formic acid. The reaction is ...
Nitrate esters are typically prepared by condensation of nitric acid and the alcohol: [1] [2] For example, the simplest nitrate ester, methyl nitrate, is formed by reaction of methanol and nitric acid in the presence of sulfuric acid: [3]
Alkaline hydrolysis of esters is also known as saponification. A base such as sodium hydroxide is required in stochiometric amounts. Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Saponification is a process of cleaving esters into carboxylate salts and alcohols by the action of aqueous alkali. Typically aqueous sodium hydroxide solutions are used. [1] [2] It is an important type of alkaline hydrolysis. When the carboxylate is long chain, its salt is called a soap.
Ethyl benzoate, C 9 H 10 O 2, is an ester formed by the condensation of benzoic acid and ethanol.It is a colorless liquid that is almost insoluble in water, but miscible with most organic solvents.
The primary advantages of Fischer esterification compared to other esterification processes are based on its relative simplicity. Straightforward acidic conditions can be used if acid-sensitive functional groups are not an issue; sulfuric acid can be used; weaker acids can be used with a tradeoff of longer reaction times.