Search results
Results from the WOW.Com Content Network
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
There are two main categories of identical particles: bosons, which can share quantum states, and fermions, which cannot (as described by the Pauli exclusion principle). Examples of bosons are photons, gluons, phonons, helium-4 nuclei and all mesons. Examples of fermions are electrons, neutrinos, quarks, protons, neutrons, and helium-3 nuclei.
Neutrons are made up of one up and two down quarks, while protons are made of two up and one down quark. Since the other common elementary particles (such as electrons, neutrinos, or weak bosons) are so light or so rare when compared to atomic nuclei, we can neglect their mass contribution to the observable universe's total mass.
The atom helium-3 (3 He) consists of two protons, one neutron, and two electrons. The deuterium atom consists of one proton, one neutron, and one electron. The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion.
By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. [43] The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. [44]
All known gauge bosons have a spin of 1 and therefore are vector bosons. For comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons , which are composite bosons, made of quarks ; third ...
bosons necessary to explain beta decay, but also a new Z boson that had never been observed. The fact that the W and Z bosons have mass while photons are massless was a major obstacle in developing electroweak theory. These particles are accurately described by an SU(2) gauge theory, but the bosons
Deuterium (2 H) has one neutron, and tritium (3 H) has two. Neutrons add mass to the atom, leading to different chemical physical properties. This effect is especially strong for hydrogen isotopes, since the added neutron doubles the mass from 1 H to 2 H. For heavier elements like carbon, nitrogen, oxygen, or sulfur, the mass difference is diluted.