Search results
Results from the WOW.Com Content Network
There are several broadly recognized algorithmic techniques that offer a proven method or process for designing and constructing algorithms. Different techniques may be used depending on the objective, which may include searching, sorting, mathematical optimization, constraint satisfaction, categorization, analysis, and prediction.
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity ) or the ...
Algorithm design is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as divide-and-conquer or dynamic programming within operation research. Techniques for designing and implementing algorithm designs are also called algorithm design patterns, [38 ...
Introduction to Algorithms is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book is described by its publisher as "the leading algorithms text in universities worldwide as well as the standard reference for professionals". [ 1 ]
The Art of Computer Programming (TAOCP) is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of computer programming for sequential machines.
Algorithm engineering focuses on the design, analysis, implementation, optimization, profiling and experimental evaluation of computer algorithms, bridging the gap between algorithmics theory and practical applications of algorithms in software engineering. [1] It is a general methodology for algorithmic research. [2]
Methods from empirical algorithmics complement theoretical methods for the analysis of algorithms. [2] Through the principled application of empirical methods, particularly from statistics, it is often possible to obtain insights into the behavior of algorithms such as high-performance heuristic algorithms for hard combinatorial problems that are (currently) inaccessible to theoretical ...
The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform .