enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    However, the linear congruence 4x ≡ 6 (mod 10) has two solutions, namely, x = 4 and x = 9. The gcd(4, 10) = 2 and 2 does not divide 5, but does divide 6. Since gcd(3, 10) = 1, the linear congruence 3x ≡ 1 (mod 10) will have solutions, that is, modular multiplicative inverses of 3 modulo 10 will exist. In fact, 7 satisfies this congruence (i ...

  3. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    That 641 is a factor of F 5 can be deduced from the equalities 641 = 2 7 × 5 + 1 and 641 = 2 4 + 5 4. It follows from the first equality that 2 7 × 5 ≡ −1 (mod 641) and therefore (raising to the fourth power) that 2 28 × 5 4 ≡ 1 (mod 641). On the other hand, the second equality implies that 5 4 ≡ −2 4 (mod 641

  4. Gradual release of responsibility - Wikipedia

    en.wikipedia.org/wiki/Gradual_release_of...

    While similar models have been identified and represented throughout the study and development of teaching and learning as a construct, it was Pearson & Gallagher (1983) [3] who coined the phrase "gradual release of responsibility" to describe this dynamic in the classroom.

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. This derives from the fact that a sequence ( g k modulo n ) always repeats after some value of k , since modulo n produces a finite number of values.

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  8. Backward design - Wikipedia

    en.wikipedia.org/wiki/Backward_design

    Ralph W. Tyler introduced the idea of "backward design" (without using this particular term) in 1949 when referring to a statement of objectives.A statement of objectives is used to indicate the kinds of changes in the student to be brought about so that instructional activities can be planned and developed in a way likely to attain these objectives.

  9. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...

  1. Related searches grade 2 mod 3 lesson 10 6 4 3 cdot 10 5

    grade 2 mod 3 lesson 10 6 4 3 cdot 10 5 5 8 cdot 10 4 10.6.5