Search results
Results from the WOW.Com Content Network
Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]
The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any arbitrary set of N ...
If the remainder is equal to 0 then use 0 as the check digit, and if not 0 subtract the remainder from 10 to derive the check digit. A GS1 check digit calculator and detailed documentation is online at GS1's website. [5] Another official calculator page shows that the mechanism for GTIN-13 is the same for Global Location Number/GLN. [6]
Hans Peter Luhn (July 1, 1896 – August 19, 1964) was a German-American [2] researcher in the field of computer science and Library & Information Science for IBM, and creator of the Luhn algorithm, KWIC (K ey W ords I n C ontext) indexing, and selective dissemination of information ("SDI"). His inventions have found applications in diverse ...
MSI barcode for the number 1234567 with Mod 10 check digit. MSI (also known as Modified Plessey) is a barcode symbology developed by the MSI Data Corporation, based on the original Plessey Code symbology. It is a continuous symbology that is not self-checking. MSI is used primarily for inventory control, marking storage containers and shelves ...
The first table, d, is based on multiplication in the dihedral group D 5. [7] and is simply the Cayley table of the group.Note that this group is not commutative, that is, for some values of j and k, d(j,k) ≠ d(k, j).
Lehmer random number generator. The Lehmer random number generator[1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is.
Essentially the algorithm figures out what the Luhn sum would be for the number sequence with out the check number. Then it determines what mod 10 of that number is. If mod 10 is 0, then the number already passes, so the check is 0. Otherwise, a value needs to be added so that the sum + check mod 10 will be zero.