Search results
Results from the WOW.Com Content Network
Waves moving through water deeper than half their wavelength are known as deep-water waves. On the other hand, the orbits of water molecules in waves moving through shallow water are flattened by the proximity of the sea bottom surface. Waves in water shallower than 1/20 their original wavelength are known as shallow-water waves.
Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and direction over a relatively short distance in the Earth's atmosphere. [61] Wind shear can be broken down into vertical and horizontal components, with horizontal wind shear seen across weather fronts and near the coast, [62] and vertical shear typically near ...
Sverdrup balance may be thought of as a consistency relationship for flow which is dominated by the Earth's rotation. Such flow will be characterized by weak rates of spin compared to that of the earth. Any parcel at rest with respect to the surface of the earth must match the spin of the earth underneath it.
The solar intensity decreases as the latitude increases, reaching essentially zero at the poles. Longitudinal circulation, however, is a result of the heat capacity of water, its absorptivity, and its mixing. Water absorbs more heat than does the land, but its temperature does not rise as greatly as does the land.
Weathering processes are either physical or chemical. The former involves the breakdown of rocks and soils through such mechanical effects as heat, water, ice and wind. The latter covers reactions to water, atmospheric gases and biologically produced chemicals with rocks and soils. Water is the principal agent behind both kinds, [1] though ...
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
The only way to decrease the planetary vorticity is by moving the water parcel equatorward, so throughout the majority of subtropical gyres there is a weak equatorward flow. Harald Sverdrup quantified this phenomenon in his 1947 paper, "Wind Driven Currents in a Baroclinic Ocean", [ 6 ] in which the (depth-integrated) Sverdrup balance is ...
However, much more water is "in storage" (or in "pools") for long periods of time than is actually moving through the cycle. The storehouses for the vast majority of all water on Earth are the oceans. It is estimated that of the 1,386,000,000 km 3 of the world's water supply, about 1,338,000,000 km 3 is stored in oceans, or about 97%.