Search results
Results from the WOW.Com Content Network
Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark; Data frames in the R programming language; Frame (networking)
String functions common to many languages are listed below, including the different names used. The below list of common functions aims to help programmers find the equivalent function in a language. Note, string concatenation and regular expressions are handled in separate pages. Statements in guillemets (« … ») are optional.
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
Spark Core is the foundation of the overall project. It provides distributed task dispatching, scheduling, and basic I/O functionalities, exposed through an application programming interface (for Java, Python, Scala, .NET [16] and R) centered on the RDD abstraction (the Java API is available for other JVM languages, but is also usable for some other non-JVM languages that can connect to the ...
The decorator pattern is a design pattern used in statically-typed object-oriented programming languages to allow functionality to be added to objects at run time; Python decorators add functionality to functions and methods at definition time, and thus are a higher-level construct than decorator-pattern classes.
The following Cuneiform program creates three parallel applications of the function f by mapping f over a three-element list: let xs : [File] = ['a.txt', 'b.txt', 'c.txt' : File]; for x <- xs do f( x = x ) : File end; Similarly, the applications of f and g are independent in the construction of the record r and can, thus, be run in parallel:
But Dash also works for R, and most recently supports Julia, and while still described a Python framework, Python isn't used for the other languages, "describing Dash as a Python framework misses a key feature of its design: the Python side (the back end/server) of Dash was built to be lightweight and stateless [allowing] multiple back-end ...