Search results
Results from the WOW.Com Content Network
The geoid is often expressed as a geoid undulation or geoidal height above a given reference ellipsoid, which is a slightly flattened sphere whose equatorial bulge is caused by the planet's rotation. Generally the geoidal height rises where the Earth's material is locally more dense and exerts greater gravitational force than the surrounding areas.
The orthometric height (symbol H) is the vertical distance along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. [1] [2] Orthometric height is one of the scientific formalizations of a layman's "height above sea level", along with other types of heights in ...
They are used as the geoid reference in the World Geodetic System. The NGA provides the models in two formats: as the series of numerical coefficients to the spherical harmonics which define the model, or a dataset giving the geoid height at each coordinate at a given resolution. [1]
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.
In geodesy, a reference ellipsoid is a mathematically defined surface that approximates the geoid, which is the truer, imperfect figure of the Earth, or other planetary body, as opposed to a perfect, smooth, and unaltered sphere, which factors in the undulations of the bodies' gravity due to variations in the composition and density of the ...
The separation between the geoid and the reference ellipsoid is called the undulation of the geoid, symbol . The geoid, or mathematical mean sea surface, is defined not only on the seas, but also under land; it is the equilibrium water surface that would result, would sea water be allowed to move freely (e.g., through tunnels) under the land.
For the geoid determination (mean sea level) and for exact transformation of elevations. The global geoidal undulations amount to 50–100 m, and their regional values to 10–50 m. They are adequate to the integrals of VD components ξ,η and therefore can be calculated with cm accuracy over distances of many kilometers.