Search results
Results from the WOW.Com Content Network
The concept and the name of gauge theory derives from the work of Hermann Weyl in 1918. [1] Weyl, in an attempt to generalize the geometrical ideas of general relativity to include electromagnetism, conjectured that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity.
The ability to vary the gauge potential at different points in space and time (by changing (,)) without changing the physics is called a local invariance. Electromagnetic theory possess the simplest kind of local gauge symmetry called () (see unitary group). A theory that displays local gauge invariance is called a gauge theory.
Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory that admits gauge symmetry. In mathematics theory means a mathematical theory , encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a ...
They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement, where they satisfy what is known as the area law.
The direct analogue of the "gauge freedom" of the gauge covariant derivative is the arbitrariness of the choice of an orthonormal d-Bein at each point in space-time: local Lorentz invariance [citation needed]. However, in this case the more general independence of the choice of coordinates for the definition of the Levi Civita connection gives ...
A gauge theory is a type of theory in physics.The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). [1]
In their foundational paper on the topic of gauge theories, Robert Mills and Chen-Ning Yang developed (essentially independent of the mathematical literature) the theory of principal bundles and connections in order to explain the concept of gauge symmetry and gauge invariance as it applies to physical theories. [1]
A gauge theory is a field theory with gauge symmetry. Roughly, there are two types of symmetries, global and local. A global symmetry is a symmetry applied uniformly (in some sense) to each point of a manifold.