enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point . [a] This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's ...

  3. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  4. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    An infinite discontinuity is the special case when either the left hand or right hand limit does not exist, specifically because it is infinite, and the other limit is either also infinite, or is some well defined finite number. In other words, the function has an infinite discontinuity when its graph has a vertical asymptote.

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  6. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function . The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions.

  7. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.

  8. Removable discontinuity - Wikipedia

    en.wikipedia.org/?title=Removable_discontinuity&...

    This page was last edited on 10 January 2015, at 10:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Talk:Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Talk:Classification_of...

    The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's domain.