enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any ⁠ m × n {\displaystyle m\times n} ⁠ matrix.

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The Python package NumPy provides a pseudoinverse calculation through its functions matrix.I and linalg.pinv; its pinv uses the SVD-based algorithm. SciPy adds a function scipy.linalg.pinv that uses a least-squares solver. The MASS package for R provides a calculation of the Moore–Penrose inverse through the ginv function. [24] The ginv ...

  4. Generalized singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Generalized_singular_value...

    In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition (SVD).The two versions differ because one version decomposes two matrices (somewhat like the higher-order or tensor SVD) and the other version uses a set of constraints imposed on the left and right singular vectors of a single-matrix SVD.

  5. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal ...

  6. Sparse dictionary learning - Wikipedia

    en.wikipedia.org/wiki/Sparse_dictionary_learning

    K-SVD is an algorithm that performs SVD at its core to update the atoms of the dictionary one by one and basically is a generalization of K-means. It enforces that each element of the input data x i {\displaystyle x_{i}} is encoded by a linear combination of not more than T 0 {\displaystyle T_{0}} elements in a way identical to the MOD approach:

  7. LAPACK - Wikipedia

    en.wikipedia.org/wiki/LAPACK

    The codes for the different kind of matrices are reported below; the actual data are stored in a different format depending on the specific kind; e.g., when the code DI is given, the subroutine expects a vector of length n containing the elements on the diagonal, while when the code GE is given, the subroutine expects an n×n array containing ...

  8. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    Latent semantic indexing (LSI) is an indexing and retrieval method that uses a mathematical technique called singular value decomposition (SVD) to identify patterns in the relationships between the terms and concepts contained in an unstructured collection of text. LSI is based on the principle that words that are used in the same contexts tend ...

  9. k-SVD - Wikipedia

    en.wikipedia.org/wiki/K-SVD

    In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.