enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    In science, work is the energy transferred to or from an object via the application of force along a displacement.In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled.

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    There are several ways of doing mechanical work, each in some way related to a force acting through a distance. [34] In basic mechanics, the work done by a constant force F on a body displaced a distance s in the direction of the force is given by = If the force is not constant, the work done is obtained by integrating the differential amount ...

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    To every action, there is always opposed an equal reaction; or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. [15]: 116 Rockets work by producing a strong reaction force downwards using rocket engines. This pushes the rocket upwards, without regard to the ground or the atmosphere.

  5. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.

  6. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest. [2]

  7. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  8. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Work, a function of energy, is force times distance. = This says that the work is equal to the line integral of the force F along a path C; for details see the mechanical work article. Work and thus energy is frame dependent. For example, consider a ball being hit by a bat.

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    5.4 Force, energy, work. 6 ... of two basis vectors is 0 if they are different and 1 if they are equal). ... as a displacement), or distance times some ...