Search results
Results from the WOW.Com Content Network
Nucleophilic substitution via the S N 1 or S N 2 mechanism does not generally occur with vinyl or aryl halides or related compounds. Under certain conditions nucleophilic substitutions may occur, via other mechanisms such as those described in the nucleophilic aromatic substitution article.
In chemistry, S N i (substitution nucleophilic internal) refers to a specific, regio-selective but not often encountered reaction mechanism for nucleophilic aliphatic substitution. The name was introduced by Cowdrey et al. in 1937 to label nucleophilic reactions which occur with retention of configuration, [ 1 ] but later was employed to ...
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
The unimolecular nucleophilic substitution (S N 1) reaction is a substitution reaction in organic chemistry. The Hughes-Ingold symbol of the mechanism expresses two properties—"S N " stands for " nucleophilic substitution ", and the "1" says that the rate-determining step is unimolecular .
The bimolecular nucleophilic substitution (S N 2) is a type of reaction mechanism that is common in organic chemistry. In the S N 2 reaction, a strong nucleophile forms a new bond to an sp 3 -hybridised carbon atom via a backside attack, all while the leaving group detaches from the reaction center in a concerted (i.e. simultaneous) fashion.
It is a nucleophilic radical substitution to an electron deficient aromatic compound, most commonly the introduction of an alkyl group to a nitrogen containing heterocycle. The reaction was published in 1971 by F. Minisci. [1] In the case of N-Heterocycles, the conditions must be acidic to ensure protonation of said heterocycle. [2]
Pages in category "Nucleophilic substitution reactions" The following 7 pages are in this category, out of 7 total. This list may not reflect recent changes. ...
Ammonolysis refers to solvolysis by ammonia, but can also describe nucleophilic attack by ammonia more generally. Ammonia boils at −33 °C, and, as such, is rarely used as a solvent in its pure form. It is, however, readily miscible with water, and is commonly used in the form of a saturated aqueous solution. For this reason, ammonolysis may ...