enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    A 1-dimensional thing is a line, and 2-dimensional thing is a plane. For these low numbers, mathematicians have proven the maximum possible kissing number for spheres of that many dimensions.

  6. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.

  7. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    This is the set of points in 3-dimensional Euclidean space found exactly one unit away from the origin. It is called the 2-sphere, S 2, for reasons given below. The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1 ...

  8. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    The two-dimensional analogue of the Poincaré conjecture says that any two-dimensional topological manifold which is closed and connected but non-homeomorphic to the two-dimensional sphere must possess a loop which cannot be continuously contracted to a point. (This is illustrated by the example of the torus, as above.)

  9. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space. In topology, the n-sphere is an example of a compact topological manifold without boundary. A topological sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere (an exotic sphere).