Search results
Results from the WOW.Com Content Network
In SGML, HTML and XML documents, the logical constructs known as character data and attribute values consist of sequences of characters, in which each character can manifest directly (representing itself), or can be represented by a series of characters called a character reference, of which there are two types: a numeric character reference and a character entity reference.
Emacs Lisp: supports integers of arbitrary size, starting with Emacs 27.1. Erlang: the built-in Integer datatype implements arbitrary-precision arithmetic. Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type)
However, since division almost immediately introduces infinitely repeating sequences of digits (such as 4/7 in decimal, or 1/10 in binary), should this possibility arise then either the representation would be truncated at some satisfactory size or else rational numbers would be used: a large integer for the numerator and for the denominator.
C# has a built-in data type decimal consisting of 128 bits resulting in 28–29 significant digits. It has an approximate range of ±1.0 × 10 −28 to ±7.9228 × 10 28. [1] Starting with Python 2.4, Python's standard library includes a Decimal class in the module decimal. [2] Ruby's standard library includes a BigDecimal class in the module ...
Unicode character name index can be used to find the Unicode number of a character. W3C list of MathML characters indexed by code or name; List of XML and HTML character entity references – includes all named entities; Glossary of mathematical symbols
If an IEEE 754 double-precision number is converted to a decimal string with at least 17 significant digits, and then converted back to double-precision representation, the final result must match the original number. [1] The format is written with the significand having an implicit integer bit of value 1 (except for special data, see the ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The simplest example given by Thimbleby of a possible problem when using an immediate-execution calculator is 4 × (−5). As a written formula the value of this is −20 because the minus sign is intended to indicate a negative number, rather than a subtraction, and this is the way that it would be interpreted by a formula calculator.