Search results
Results from the WOW.Com Content Network
Although spreadsheets like Excel, Open Office Calc, or Google Sheets don't provide a clamping function directly, the same effect can be achieved by using functions like MAX & MIN together, by MEDIAN [8] [9], or with cell function macros [10]. When attempting to do a clamp where the input is an array, other methods must be used [11].
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].
extract-max (or extract-min): returns the node of maximum value from a max heap [or minimum value from a min heap] after removing it from the heap (a.k.a., pop [5]) delete-max (or delete-min): removing the root node of a max heap (or min heap), respectively; replace: pop root and push a new key. This is more efficient than a pop followed by a ...
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
The Build-Max-Heap function that follows, converts an array A which stores a complete binary tree with n nodes to a max-heap by repeatedly using Max-Heapify (down-heapify for a max-heap) in a bottom-up manner. The array elements indexed by floor(n/2) + 1, floor(n/2) + 2, ..., n are all leaves for the tree (assuming that indices start at 1 ...