Search results
Results from the WOW.Com Content Network
In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.
RATS: robusterrors option is available in many of the regression and optimization commands (linreg, nlls, etc.). Stata: robust option applicable in many pseudo-likelihood based procedures. [19] Gretl: the option --robust to several estimation commands (such as ols) in the context of a cross-sectional dataset produces robust standard errors. [20]
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
Whereas Stata/MP allows for built-in parallel processing of certain commands, Stata/SE and Stata/BE are bottlenecked and limit usage to only one single core. [19] Stata/MP runs certain commands about 2.4 times faster, roughly 60% of theoretical maximum efficiency, when running parallel processes on four CPU cores compared to SE or BE versions. [19]
The instrument must be correlated with the endogenous explanatory variables, conditionally on the other covariates. If this correlation is strong, then the instrument is said to have a strong first stage. A weak correlation may provide misleading inferences about parameter estimates and standard errors. [3] [4]
In EViews, this test is already done after a regression, at "View" → "Residual Diagnostics" → "Serial Correlation LM Test". In Julia, the BreuschGodfreyTest function is available in the HypothesisTests package. [10] In gretl, this test can be obtained via the modtest command, or under the "Test" → "Autocorrelation" menu entry in the GUI ...
The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been ...
A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1] If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an ...