Search results
Results from the WOW.Com Content Network
The complexity enters when calculating intersections at points of tangency, and intersections which are not just points, but have higher dimension. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory.
The intersection number of the graph is the smallest number such that there exists a representation of this type for which the union of the sets in has elements. [1] The problem of finding an intersection representation of a graph with a given number of elements is known as the intersection graph basis problem .
There are two definitions. In the most common one, the disjoint union of graphs, the union is assumed to be disjoint. Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2). graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1]
Constructive solid geometry has a number of practical uses. It is used in cases where simple geometric objects are desired, [ citation needed ] or where mathematical accuracy is important. [ 4 ] Nearly all engineering CAD packages use CSG (where it may be useful for representing tool cuts, and features where parts must fit together).
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
In geometric graph theory, a unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. That is, it is a graph with one vertex for each disk in the family, and with an edge between two vertices whenever the corresponding vertices lie within a unit distance of each other.
The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment intersection before calculating its exact point.
Union [e] If R and S are relations over X then R ∪ S = { (x, y) | xRy or xSy} is the union relation of R and S. The identity element of this operation is the empty relation. For example, ≤ is the union of < and =, and ≥ is the union of > and =. Intersection [e] If R and S are relations over X then R ∩ S = { (x, y) | xRy and xSy} is the ...