enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Illustration showing how to find the angle between vectors using the dot product Calculating bond angles of a symmetrical tetrahedral molecular geometry using a dot product. In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow.

  3. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation

  4. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Alternatively, it is defined as the product of the projection of the first vector onto the second vector and the magnitude of the second vector.

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval [,].

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The scalar projection is defined as [2] = ‖ ‖ ⁡ = ^ where the operator ⋅ denotes a dot product, ‖a‖ is the length of a, and θ is the angle between a and b. The scalar projection is equal in absolute value to the length of the vector projection, with a minus sign if the direction of the projection is opposite to the direction of b ...

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The dot product of two vectors tangent to the sphere sitting inside 3-dimensional Euclidean space contains information about the lengths and angle between the vectors. The dot products on every tangent plane, packaged together into one mathematical object, are a Riemannian metric. In differential geometry, a Riemannian manifold is a geometric ...

  9. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    A ⁠ ⁠-graded vector space structure can be established on a geometric algebra by use of the exterior product that is naturally induced by the geometric product. Since the geometric product and the exterior product are equal on orthogonal vectors, this grading can be conveniently constructed by using an orthogonal basis ⁠ {, …,} ⁠.