Search results
Results from the WOW.Com Content Network
The spectral test is a statistical test for the quality of a class of pseudorandom number generators (PRNGs), the linear congruential generators (LCGs). [1] LCGs have a property that when plotted in 2 or more dimensions, lines or hyperplanes will form, on which all possible outputs can be found. [ 2 ]
The following table lists the parameters of LCGs in common use, including built-in rand() functions in runtime libraries of various compilers. This table is to show popularity, not examples to emulate; many of these parameters are poor. Tables of good parameters are available. [10] [2]
Widely used in many programs, e.g. it is used in Excel 2003 and later versions for the Excel function RAND [8] and it was the default generator in the language Python up to version 2.2. [9] Rule 30: 1983 S. Wolfram [10] Based on cellular automata. Inversive congruential generator (ICG) 1986 J. Eichenauer and J. Lehn [11] Blum Blum Shub: 1986
See also: List of functional analysis topics, List of wavelet-related transforms; Inverse distance weighting; Radial basis function (RBF) — a function of the form ƒ(x) = φ(|x−x 0 |) Polyharmonic spline — a commonly used radial basis function; Thin plate spline — a specific polyharmonic spline: r 2 log r; Hierarchical RBF
The CLCG provides an efficient way to calculate pseudo-random numbers. The LCG algorithm is computationally inexpensive to use. [3] The results of multiple LCG algorithms are combined through the CLCG algorithm to create pseudo-random numbers with a longer period than is achievable with the LCG method by itself. [3]
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
Spectral methods and finite-element methods are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are generally nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains (compact support).
The pseudo-Voigt profile (or pseudo-Voigt function) is an approximation of the Voigt profile V(x) using a linear combination of a Gaussian curve G(x) and a Lorentzian curve L(x) instead of their convolution. The pseudo-Voigt function is often used for calculations of experimental spectral line shapes.