enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Andreev reflection - Wikipedia

    en.wikipedia.org/wiki/Andreev_reflection

    Andreev reflection, named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to supercurrent in S.

  3. File:Andreev reflection.svg - Wikipedia

    en.wikipedia.org/wiki/File:Andreev_reflection.svg

    Diagram of Andreev reflection. An electron meeting the interface between a normal conductor and a superconductor produces a Cooper pair in the superconductor and a retroreflected electron hole in the normal conductor. Legend: "N" = normal conductor, "S" = superconductor, red = electron, green = hole. Arrows indicate the spin band occupied by ...

  4. List of superconductors - Wikipedia

    en.wikipedia.org/wiki/List_of_superconductors

    The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.

  5. Proximity effect (superconductivity) - Wikipedia

    en.wikipedia.org/wiki/Proximity_effect...

    Plot showing superconducting electron density versus depth in normal and superconducting layers with two coherence lengths, and .. Proximity effect or Holm–Meissner effect is a term used in the field of superconductivity to describe phenomena that occur when a superconductor (S) is placed in contact with a "normal" (N) non-superconductor.

  6. Type-II superconductor - Wikipedia

    en.wikipedia.org/wiki/Type-II_superconductor

    These materials are type-II superconductors with substantial upper critical field H c2, and in contrast to, for example, the cuprate superconductors with even higher H c2, they can be easily machined into wires. Recently, however, 2nd generation superconducting tapes are allowing replacement of cheaper niobium-based wires with much more ...

  7. Type-I superconductor - Wikipedia

    en.wikipedia.org/wiki/Type-I_superconductor

    Phase diagram (B, T) of a type I superconductor : if B < B c, the medium is superconducting. T c is the critical temperature of a superconductor when there is no magnetic field. The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes ...

  8. Silsbee effect - Wikipedia

    en.wikipedia.org/wiki/Silsbee_effect

    The size of the critical current (which can be as large as 100 amperes in a 1-mm wire) depends on the nature and geometry of the specimen and is related to whether the magnetic field produced by the current exceeds the critical field at the surface of the superconductor.

  9. Abrikosov vortex - Wikipedia

    en.wikipedia.org/wiki/Abrikosov_vortex

    Vortices in a 200-nm-thick YBCO film imaged by scanning SQUID microscopy [1]. In superconductivity, a fluxon (also called an Abrikosov vortex or quantum vortex) is a vortex of supercurrent in a type-II superconductor, used by Soviet physicist Alexei Abrikosov to explain magnetic behavior of type-II superconductors. [2]