Search results
Results from the WOW.Com Content Network
In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.
But often, it is easier to deal with vectors of unit length. That is, it often simplifies things to only consider vectors whose norm equals 1. The notion of restricting orthogonal pairs of vectors to only those of unit length is important enough to be given a special name. Two vectors which are orthogonal and of length 1 are said to be orthonormal.
The inverse of every orthogonal matrix is again orthogonal, as is the matrix product of two orthogonal matrices. In fact, the set of all n × n orthogonal matrices satisfies all the axioms of a group. It is a compact Lie group of dimension n(n − 1) / 2 , called the orthogonal group and denoted by O(n).
The basis vectors shown above are covariant basis vectors (because they "co-vary" with vectors). In the case of orthogonal coordinates, the contravariant basis vectors are easy to find since they will be in the same direction as the covariant vectors but reciprocal length (for this reason, the two sets of basis vectors are said to be reciprocal ...
Two non-zero vectors and are orthogonal if and only if =. No cancellation Unlike multiplication of ordinary numbers, where if a b = a c {\displaystyle ab=ac} , then b {\displaystyle b} always equals c {\displaystyle c} unless a {\displaystyle a} is zero, the dot product does not obey the cancellation law :
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form .Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when (+) () = .
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. [1] [2] [3] For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner ...