Search results
Results from the WOW.Com Content Network
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
The second requirement ensures that the average of the corresponding distribution is equal to that of the sample used. If K is a kernel, then so is the function K* defined by K*(u) = λK(λu), where λ > 0. This can be used to select a scale that is appropriate for the data.
Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...
Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).
One very early weighted estimator is the Horvitz–Thompson estimator of the mean. [3] When the sampling probability is known, from which the sampling population is drawn from the target population, then the inverse of this probability is used to weight the observations. This approach has been generalized to many aspects of statistics under ...
A price index (plural: "price indices" or "price indexes") is a normalized average (typically a weighted average) of price relatives for a given class of goods or services in a given region, during a given interval of time.
A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...
Then, any weighted average also has the same amount of commodity 1, so any weighted average is equivalent to and . If the minimum commodity in each bundle is different (e.g. x 1 ≤ x 2 {\displaystyle x_{1}\leq x_{2}} but y 1 ≥ y 2 {\displaystyle y_{1}\geq y_{2}} ), then this implies x 1 = y 2 ≤ x 2 , y 1 {\displaystyle x_{1}=y_{2}\leq x_{2 ...