Search results
Results from the WOW.Com Content Network
The integrity of the DNA was maintained by a group of repair enzymes including DNA topoisomerase. [16] If the genetic code was based on dual-stranded DNA, it was expressed by copying the information to single-stranded RNA. The RNA was produced by a DNA-dependent RNA polymerase using nucleotides similar to those of DNA. [10]
RNA polymerase (purple) unwinding the DNA double helix. It uses one strand (darker orange) as a template to create the single-stranded messenger RNA (green). In molecular biology , RNA polymerase (abbreviated RNAP or RNApol ), or more specifically DNA-directed/dependent RNA polymerase ( DdRP ), is an enzyme that catalyzes the chemical reactions ...
RdRps can be used as drug targets for viral pathogens as their function is not necessary for eukaryotic survival. By inhibiting RdRp function, new RNAs cannot be replicated from an RNA template strand, however, DNA-dependent RNA polymerase remains functional. Some antiviral drugs against Hepatitis C and COVID-19 specifically target RdRp.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Common changes in nucleotide analogues. Nucleic acid analogues are used in molecular biology for several purposes: Investigation of possible scenarios of the origin of life: By testing different analogs, researchers try to answer the question of whether life's use of DNA and RNA was selected over time due to its advantages, or if they were chosen by arbitrary chance; [3]
A comparison of RNA (left) with DNA (right), showing the helices and nucleobases each employs. The RNA world is a hypothetical stage in the evolutionary history of life on Earth in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. [1] The term also refers to the hypothesis that posits the existence of ...
In contrast to similar techniques such as polymerase chain reaction and ligase chain reaction, this method involves RNA transcription (via RNA polymerase) and DNA synthesis (via reverse transcriptase) to produce an RNA amplicon (the source or product of amplification) from a target nucleic acid. This technique can be used to target both RNA and ...
Reverse transcriptase again synthesizes another DNA strand from the attached primer resulting in double stranded DNA. T7 RNA polymerase binds to the promoter region on the double strand. Since T7 RNA polymerase can only transcribe in the 3' to 5' direction [15] the sense DNA is transcribed and an anti-sense RNA is produced. This is repeated ...