Search results
Results from the WOW.Com Content Network
in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...
Enzymes act on small molecules called substrates, which an enzyme converts into products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics.
The first assumption is the so-called quasi-steady-state assumption (or pseudo-steady-state hypothesis), namely that the concentration of the substrate-bound enzyme (and hence also the unbound enzyme) changes much more slowly than those of the product and substrate and thus the change over time of the complex can be set to zero [] / =!.
Substrate inhibition in bioreactors occurs when the concentration of substrate (such as glucose, salts, or phenols [1]) exceeds the optimal parameters and reduces the growth rate of the cells within the bioreactor. This is often confused with substrate limitation, which describes environments in which cell growth is limited due to of low substrate.
It is sometimes explained by supposing that the inhibitor can bind to the enzyme-substrate complex but not to the free enzyme. This type of mechanism is rather rare, [ 2 ] and in practice uncompetitive inhibition is mainly encountered as a limiting case of inhibition in two-substrate reactions in which one substrate concentration is varied and ...
The enzyme unit, or international unit for enzyme (symbol U, sometimes also IU) is a unit of enzyme's catalytic activity. [ 1 ] 1 U (μmol/min) is defined as the amount of the enzyme that catalyzes the conversion of one micro mole of substrate per minute under the specified conditions of the assay method .
Increasing the substrate concentration increases the rate of reaction (enzyme activity). However, enzyme saturation limits reaction rates. An enzyme is saturated when the active sites of all the molecules are occupied most of the time. At the saturation point, the reaction will not speed up, no matter how much additional substrate is added.
Factors that may induce such changes include temperature, pH, voltage, light in chromophores, concentration of ions, phosphorylation, or the binding of a ligand. Transitions between these states occur on a variety of length scales (tenths of Å to nm) and time scales (ns to s), and have been linked to functionally relevant phenomena such as ...