enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    For a given enzyme concentration and for relatively low substrate concentrations, the reaction rate increases linearly with substrate concentration; the enzyme molecules are largely free to catalyse the reaction, and increasing substrate concentration means an increasing rate at which the enzyme and substrate molecules encounter one another.

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics. The rate of reaction of many chemical reactions shows a linear response as function of the concentration of substrate molecules. Enzymes however display a saturation effect where,, as the substrate concentration is increased the reaction rate ...

  5. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    To find the maximum speed of an enzymatic reaction, the substrate concentration is increased until a constant rate of product formation is seen. This is shown in the saturation curve on the right. Saturation happens because, as substrate concentration increases, more and more of the free enzyme is converted into the substrate-bound ES complex.

  6. Substrate inhibition in bioreactors - Wikipedia

    en.wikipedia.org/wiki/Substrate_inhibition_in...

    Substrate inhibition in bioreactors occurs when the concentration of substrate (such as glucose, salts, or phenols [1]) exceeds the optimal parameters and reduces the growth rate of the cells within the bioreactor. This is often confused with substrate limitation, which describes environments in which cell growth is limited due to of low substrate.

  7. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    The effects of temperature on enzyme activity. Top: increasing temperature increases the rate of reaction (Q10 coefficient). Middle: the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom: consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  8. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    Increasing the substrate concentration increases the rate of reaction (enzyme activity). However, enzyme saturation limits reaction rates. An enzyme is saturated when the active sites of all the molecules are occupied most of the time. At the saturation point, the reaction will not speed up, no matter how much additional substrate is added.

  9. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Both are used by enzymes and have been evolutionarily chosen to minimize the activation energy of the reaction. Enzymes that are saturated, that is, have a high affinity substrate binding, require differential binding to reduce the energy of activation, whereas small substrate unbound enzymes may use either differential or uniform binding. [5]

  1. Related searches how does temperature affect substrate concentration in enzymes reaction

    enzymatic reaction rateenzymes and their properties
    how many enzymes in substrate