enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation y = f ( x ) {\displaystyle y=f(x)} in which the functional form is explicitly stated; this is called an explicit representation.

  3. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  4. Unit distance graph - Wikipedia

    en.wikipedia.org/wiki/Unit_distance_graph

    An abstract graph is said to be a unit distance graph if it is possible to find distinct locations in the plane for its vertices, so that its edges have unit length and so that all non-adjacent pairs of vertices have non-unit distances. When this is possible, the abstract graph is isomorphic to the unit distance graph of the chosen locations ...

  5. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  6. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  8. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    8 is a cyclic group of order 7. The symmetries of P 1 F 7 are Möbius transformations, and the basic transformations are reflections (order 2, k ↦ −1/k), translations (order 7, k ↦ k + 1), and doubling (order 3 since 2 3 = 1, k ↦ 2k). The corresponding symmetries on the Fano plane are respectively swapping vertices, rotating the graph ...

  9. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    These numbers give the largest possible value of the Hosoya index for an n-vertex graph. [11] The number of perfect matchings of the complete graph K n (with n even) is given by the double factorial (n – 1)!!. [12] The crossing numbers up to K 27 are known, with K 28 requiring either 7233 or 7234 crossings.