enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The formulas for addition and subtraction involving a small angle may be used for interpolating between trigonometric table values: Example: sin(0.755) ⁡ = ⁡ (+) ⁡ + ⁡ () + () where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  4. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180x/ π)°, so that, for example, sin π = sin 180° when we take x = π.

  6. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ⁡ ( 0 ) = 0 {\displaystyle \sin(0)=0} .

  7. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    In either case, the value at x = 0 is defined to be the limiting value ⁡:= ⁡ = for all real a ≠ 0 (the limit can be proven using the squeeze theorem). The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π ).

  8. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    This point can also be represented in polar coordinates as (,), where r is the absolute value of z (distance from the origin), and is the argument of z (angle counterclockwise from the positive x-axis). By the definitions of sine and cosine, this point has cartesian coordinates of (⁡, ⁡), implying that = (⁡ + ⁡).

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have ⁡ < <. For negative values of θ we have, by the symmetry of the sine function