enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data modeling - Wikipedia

    en.wikipedia.org/wiki/Data_modeling

    Data modeling techniques and methodologies are used to model data in a standard, consistent, predictable manner in order to manage it as a resource. The use of data modeling standards is strongly recommended for all projects requiring a standard means of defining and analyzing data within an organization, e.g., using data modeling:

  3. Data model - Wikipedia

    en.wikipedia.org/wiki/Data_model

    Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.

  4. IDEF - Wikipedia

    en.wikipedia.org/wiki/IDEF

    IDEF refers to a family of modeling language, which cover a wide range of uses, from functional modeling to data, simulation, object-oriented analysis/design and knowledge acquisition. Eventually the IDEF methods have been defined up to IDEF14: IDEF0: Function modeling [1] IDEF1: Information modeling [2] IDEF1X: Data modeling [3]

  5. Modeling and simulation - Wikipedia

    en.wikipedia.org/wiki/Modeling_and_simulation

    Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making. [1] [2]

  6. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  7. Data vault modeling - Wikipedia

    en.wikipedia.org/wiki/Data_Vault_Modeling

    The new specification consists of three pillars: methodology (SEI/CMMI, Six Sigma, SDLC, etc..), the architecture (amongst others an input layer (data stage, called persistent staging area in Data Vault 2.0) and a presentation layer (data mart), and handling of data quality services and master data services), and the model. Within the ...

  8. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  9. Dimensional modeling - Wikipedia

    en.wikipedia.org/wiki/Dimensional_modeling

    Dimensional modeling (DM) is part of the Business Dimensional Lifecycle methodology developed by Ralph Kimball which includes a set of methods, techniques and concepts for use in data warehouse design.