Search results
Results from the WOW.Com Content Network
Glucan 1,4-alpha-maltohydrolase (EC 3.2.1.133, maltogenic alpha-amylase, 1,4-alpha-D-glucan alpha-maltohydrolase) is an enzyme with systematic name 4-alpha-D-glucan alpha-maltohydrolase. [ 1 ] [ 2 ] This enzyme catalyses the following chemical reaction
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
The maltogenic alpha-amylase is an enzyme which catalyses hydrolysis of (1-4)-alpha-D-glucosidic linkages in polysaccharides so as to remove successive alpha-maltose residues from the non-reducing ends of the chains in the conversion of starch to maltose.
An inhibitor of alpha-amylase, called phaseolamin, has been tested as a potential diet aid. [10] When used as a food additive, amylase has E number E1100, and may be derived from pig pancreas or mold fungi. Bacilliary amylase is also used in clothing and dishwasher detergents to dissolve starches from fabrics and dishes.
Miglitol is fairly well absorbed by the body, as opposed to acarbose. Moreover, acarbose inhibits pancreatic alpha-amylase in addition to alpha-glucosidase, and is degraded by gut bacterial maltogenic alpha-amylase and cyclomaltodextrinase. [4] [5]
It has been reported that the maltogenic alpha-amylase from Thermus sp. IM6501 (ThMA) and a cyclodextrinase (CDase) from Streptococcus pyogenes could hydrolyse acarbose to glucose and acarviosine-glucose, ThMA can further hydrolyze acarviosine-glucose into acarviosin and glucose.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
β-Amylase (EC 3.2.1.2, saccharogen amylase, glycogenase) is an enzyme with the systematic name 4-α-D-glucan maltohydrolase. [ 2 ] [ 3 ] [ 4 ] It catalyses the following reaction: Hydrolysis of (1→4)-α- D -glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains