Search results
Results from the WOW.Com Content Network
The objectives of Distributed Artificial Intelligence are to solve the reasoning, planning, learning and perception problems of artificial intelligence, especially if they require large data, by distributing the problem to autonomous processing nodes (agents). To reach the objective, DAI requires:
Stream processing is especially suitable for applications that exhibit three application characteristics: [citation needed] Compute intensity, the number of arithmetic operations per I/O or global memory reference. In many signal processing applications today it is well over 50:1 and increasing with algorithmic complexity.
The International Parallel and Distributed Processing Symposium (or IPDPS) is an annual conference for engineers and scientists to present recent findings in the fields of parallel processing and distributed computing. In addition to technical sessions of submitted paper presentations, the meeting offers workshops, tutorials, and commercial ...
A distributed transaction operates within a distributed environment, typically involving multiple nodes across a network depending on the location of the data. A key aspect of distributed transactions is atomicity , which ensures that the transaction is completed in its entirety or not executed at all.
In the middle of Sternberg's theory is cognition and with that is information processing. In Sternberg's theory, he says that information processing is made up of three different parts, meta components, performance components, and knowledge-acquisition components. [2] These processes move from higher-order executive functions to lower-order ...
A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing , such as telecommunications , scientific computing , distributed information processing , and real-time process control .
The second wave blossomed in the late 1980s, following a 1987 book about Parallel Distributed Processing by James L. McClelland, David E. Rumelhart et al., which introduced a couple of improvements to the simple perceptron idea, such as intermediate processors (now known as "hidden layers") alongside input and output units, and used a sigmoid ...
Distributed data processing. Distributed data processing [1] (DDP) [2] was the term that IBM used for the IBM 3790 (1975) and its successor, the IBM 8100 (1979). Datamation described the 3790 in March 1979 as "less than successful." [3] [4] Distributed data processing was used by IBM to refer to two environments: IMS DB/DC; CICS/DL/I [5] [6]