Search results
Results from the WOW.Com Content Network
The attractor was first observed in simulations, then realized physically after Leon Chua invented the autonomous chaotic circuit which became known as Chua's circuit. [1] The double-scroll attractor from the Chua circuit was rigorously proven to be chaotic [2] through a number of Poincaré return maps of the attractor explicitly derived by way ...
List of free analog and digital electronic circuit simulators, available for Windows, macOS, Linux, and comparing against UC Berkeley SPICE. The following table is split into two groups based on whether it has a graphical visual interface or not.
Another visualization of the same 3D attractor is this video. Code capable of rendering this is available. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system. System values that get close enough to the attractor values ...
This animation shows how the attractor of the system changes as the parameter is varied from 0.0 to 1.0 in steps of 0.01. The Ikeda dynamical system is simulated for 500 steps, starting from 20000 randomly placed starting points. The last 20 points of each trajectory are plotted to depict the attractor.
The frequency response of this oscillator describes the amplitude of steady state response of the equation (i.e. ()) at a given frequency of excitation . For a linear oscillator with β = 0 , {\displaystyle \beta =0,} the frequency response is also linear.
In attractor networks, an attractor (or attracting set) is a closed subset of states A toward which the system of nodes evolves. A stationary attractor is a state or sets of states where the global dynamics of the network stabilize. Cyclic attractors evolve the network toward a set of states in a limit cycle, which is repeatedly traversed ...
The Rössler attractor Rössler attractor as a stereogram with =, =, = The Rössler attractor (/ ˈ r ɒ s l ər /) is the attractor for the Rössler system, a system of three non-linear ordinary differential equations originally studied by Otto Rössler in the 1970s.
The y-axis is the ratio of the OCTC (open-circuit time constant) estimate to the true time constant. For the lowest pole use curve T_1; this curve refers to the corner frequency; and for the higher pole use curve T_2. The worst agreement is for τ 1 = τ 2. In this case τ ^ 1 = 2 τ 1 and the corner frequency is a factor of 2 too small. The ...